Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2469: 129-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508835

RESUMEN

Agrobacterium rhizogenes is the bacterial agent that causes hairy root disease in dicots and is purposefully engineered for the development of transgenic hairy root cultures. Due to their genetic and metabolic stability, hairy root cultures offer advantages as a tissue culture system for investigating the function of transgenes and as a production platform for specialized metabolites or proteins. The process for generating hairy root cultures involves first infecting the explant with A. rhizogenes, excising and eliminating A. rhizogenes from the emerging hairy roots, selecting for transgenic hairy roots on plates containing the selective agent, confirming genomic integration of transgenes by PCR, and finally adapting the hairy roots in liquid media. Here we provide a detailed protocol for developing and maintaining transgenic hairy root cultures of our medicinal plant of interest, Catharanthus roseus.


Asunto(s)
Catharanthus , Agrobacterium/genética , Catharanthus/genética , Catharanthus/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transformación Genética
2.
Nature ; 604(7904): 160-166, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355011

RESUMEN

Although more than 98% of the human genome is non-coding1, nearly all of the drugs on the market target one of about 700 disease-related proteins. The historical reluctance to invest in non-coding RNA stems partly from requirements for drug targets to adopt a single stable conformation2. Most RNAs can adopt several conformations of similar stabilities. RNA structures also remain challenging to determine3. Nonetheless, an increasing number of diseases are now being attributed to non-coding RNA4 and the ability to target them would vastly expand the chemical space for drug development. Here we devise a screening strategy and identify small molecules that bind the non-coding RNA prototype Xist5. The X1 compound has drug-like properties and binds specifically the RepA motif6 of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that RepA can adopt multiple conformations but favours one structure in solution. X1 binding reduces the conformational space of RepA, displaces cognate interacting protein factors (PRC2 and SPEN), suppresses histone H3K27 trimethylation, and blocks initiation of X-chromosome inactivation. X1 inhibits cell differentiation and growth in a female-specific manner. Thus, RNA can be systematically targeted by drug-like compounds that disrupt RNA structure and epigenetic function.


Asunto(s)
Cromosomas Humanos X , ARN Largo no Codificante , Inactivación del Cromosoma X , Diferenciación Celular , Cromosomas Humanos X/genética , Femenino , Histonas/metabolismo , Humanos , ARN Largo no Codificante/genética , Inactivación del Cromosoma X/genética
3.
SLAS Discov ; 25(4): 384-396, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31701793

RESUMEN

Although the potential value of RNA as a target for new small molecule therapeutics is becoming increasingly credible, the physicochemical properties required for small molecules to selectively bind to RNA remain relatively unexplored. To investigate the druggability of RNAs with small molecules, we have employed affinity mass spectrometry, using the Automated Ligand Identification System (ALIS), to screen 42 RNAs from a variety of RNA classes, each against an array of chemically diverse drug-like small molecules (~50,000 compounds) and functionally annotated tool compounds (~5100 compounds). The set of RNA-small molecule interactions that was generated was compared with that for protein-small molecule interactions, and naïve Bayesian models were constructed to determine the types of specific chemical properties that bias small molecules toward binding to RNA. This set of RNA-selective chemical features was then used to build an RNA-focused set of ~3800 small molecules that demonstrated increased propensity toward binding the RNA target set. In addition, the data provide an overview of the specific physicochemical properties that help to enable binding to potential RNA targets. This work has increased the understanding of the chemical properties that are involved in small molecule binding to RNA, and the methodology used here is generally applicable to RNA-focused drug discovery efforts.


Asunto(s)
Descubrimiento de Drogas , Terapia Molecular Dirigida , ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Humanos , Ligandos , Espectrometría de Masas , Preparaciones Farmacéuticas , ARN/genética , Bibliotecas de Moléculas Pequeñas/química
4.
Methods ; 167: 28-38, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31059829

RESUMEN

Recent advances resulting from the completion of the human genome have shown that RNA has the promise to be a target for small molecule drugs, and therefore represents a previously unexploited class of targets for novel human therapeutics. We recently reported the adaptation of an affinity selection mass spectrometry screening technique, termed ALIS (Automatic Ligand Identification System), to screen and characterize a variety of RNA species from both prokaryotic and eukaryotic sources. We demonstrated that the ALIS technique, which had previously been used for protein targets, was also compatible for screening, ranking and characterizing small molecule ligands for RNA targets. We present here a detailed description of the use of ALIS for screening and characterizing ligands for RNA and discuss issues of validating and testing RNA for use in the ALIS system. We have also further elaborated on issues of RNA stability and testing in the ALIS system and demonstrate that the affinity-selection screening system has the potential to be a general solution for label-free screening and characterization of small molecule drug candidates for RNA targets.


Asunto(s)
Descubrimiento de Drogas/métodos , Tamizaje Masivo/métodos , ARN/química , Bibliotecas de Moléculas Pequeñas/química , Humanos , Ligandos , Espectrometría de Masas/métodos , ARN/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología
5.
SLAS Discov ; 24(2): 142-157, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30204533

RESUMEN

The Myc oncogene is overexpressed in many cancers, yet targeting it for cancer therapy has remained elusive. One strategy for inhibition of Myc expression is through stabilization of the G-quadruplex (G4), a G-rich DNA secondary structure found within the Myc promoter; stabilization of G4s has been shown to halt transcription of downstream gene products. Here we used the Automated Ligand Identification System (ALIS), an affinity selection-mass spectrometry method, to identify compounds that bind to the Myc G4 out of a pool of compounds that had previously been shown to inhibit Myc expression in a reporter screen. Using an ALIS-based screen, we identified hits that bound to the Myc G4, a small subset of which bound preferentially relative to G4s from the promoters of five other genes. To determine functionality and specificity of the Myc G4-binding compounds in cell-based assays, we compared inhibition of Myc expression in cells with and without Myc G4 regulation. Several compounds inhibited Myc expression only in the Myc G4-containing line, and one compound was verified to function through Myc G4 binding. Our study demonstrates that ALIS can be used to identify selective nucleic acid-binding compounds from phenotypic screen hits, increasing the pool of drug targets beyond proteins.


Asunto(s)
G-Cuádruplex , Espectrometría de Masas/métodos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Línea Celular , Proliferación Celular , Evaluación Preclínica de Medicamentos , Exones/genética , Humanos , Ligandos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Plant Direct ; 3(12): e00193, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31909362

RESUMEN

Cys2/His2-type (C2H2) zinc finger proteins, such as ZCT1, are an important class of transcription factors involved in growth, development, and stress responses in plants. In the medicinal plant Catharanthus roseus, the zinc finger Catharanthus transcription factor (ZCT) family represses monoterpenoid indole alkaloid (MIA) biosynthetic gene expression. Here, we report the analysis of the ZCT1 promoter, which contains several hormone-responsive elements. ZCT1 is responsive to not only jasmonate, as was previously known, but is also induced by the synthetic auxin, 1-naphthalene acetic acid (1-NAA). Through promoter deletion analysis, we show that an activation sequence-1-like (as-1-like)-motif and other motifs contribute significantly to ZCT1 expression in seedlings. We also show that the activator ORCA3 does not transactivate the expression of ZCT1 in seedlings, but ZCT1 represses its own promoter, suggesting a feedback mechanism by which the expression of ZCT1 can be limited.

7.
ACS Chem Biol ; 13(3): 820-831, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29412640

RESUMEN

Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule-ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics.


Asunto(s)
Descubrimiento de Drogas , Espectrometría de Masas/métodos , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas , Cristalografía por Rayos X , Mononucleótido de Flavina/metabolismo , Ligandos , Estructura Molecular , Pirimidinas/metabolismo , Pirimidinas/farmacología , Riboswitch
8.
Bioorg Med Chem Lett ; 27(23): 5083-5088, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097169

RESUMEN

Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents.


Asunto(s)
ARN/química , Bibliotecas de Moléculas Pequeñas/química , G-Cuádruplex , Humanos , MicroARNs/química , MicroARNs/metabolismo , Proteoma/antagonistas & inhibidores , Proteoma/metabolismo , ARN/metabolismo , Empalme del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo
9.
PLoS One ; 11(7): e0159712, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467510

RESUMEN

The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17ß-estradiol (5µM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000µM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.


Asunto(s)
Catharanthus/metabolismo , Silenciador del Gen , Raíces de Plantas/metabolismo , Proteínas Represoras/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Transcripción Genética , Catharanthus/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , Proteínas Represoras/genética
10.
Biotechnol Prog ; 29(6): 1367-76, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23970483

RESUMEN

The effects of methyl jasmonate (MJ) dosage on terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus are correlated with the relative levels of specific MJ-responsive transcription factors. In this study, the expression of transcription factors (Orca, Zct, Gbf, Myc2, At-hook, and Wrky1), TIA pathway genes (G10h, Tdc, Str, and Sgd), and TIA metabolites (secologanin, strictosidine, and tabersonine) were investigated in C. roseus hairy root cultures elicited with a range of MJ dosages (0-1,000 µM) during mid-exponential growth. The highest production of TIA metabolites occurs at 250 µM MJ, increasing by 150-370% compared with untreated controls. At this MJ dosage, the expression of the transcriptional activators (Orca) is dramatically increased (29-40 fold) while the levels of the transcriptional repressors (Zct) remain low (2-7 fold). Simultaneously, the expression of genes coding for key enzymes involved in TIA biosynthesis increases by 8-15 fold. In contrast, high MJ dosages (1,000 µM) inhibit the production of TIA metabolites. This dosage is correlated with elevated expression levels of Zct (up to 40-fold) relative to Orca (13-19-fold) and minimal induction of the TIA biosynthetic genes (0-6 fold). The significant changes in the expression of Orca and Zct with MJ dosage do not correspond to changes in the expression of the early-response transcription factors (AT-hook, Myc2, and Wrky1) believed to regulate Orca and Zct. In summary, these observations suggest that the dependence of alkaloid production on MJ dosage in C. roseus may be partly mediated through the relative levels of Orca and Zct family transcription factors.


Asunto(s)
Alcaloides/biosíntesis , Catharanthus/citología , Técnicas de Cultivo de Célula , Ciclopentanos/farmacología , Oxilipinas/farmacología , Factores de Transcripción/biosíntesis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Regiones Promotoras Genéticas , Transactivadores/biosíntesis , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...